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ABSTRACT: While convective storm mode is explicitly depicted in convection-allowing model (CAM) output, subjec-
tively diagnosing mode in large volumes of CAM forecasts can be burdensome. In this work, four machine learning (ML)
models were trained to probabilistically classify CAM storms into one of three modes: supercells, quasi-linear convective
systems, and disorganized convection. The four ML models included a dense neural network (DNN), logistic regression
(LR), a convolutional neural network (CNN), and semisupervised CNN–Gaussian mixture model (GMM). The DNN,
CNN, and LR were trained with a set of hand-labeled CAM storms, while the semisupervised GMM used updraft helicity
and storm size to generate clusters, which were then hand labeled. When evaluated using storms withheld from training,
the four classifiers had similar ability to discriminate between modes, but the GMM had worse calibration. The DNN and
LR had similar objective performance to the CNN, suggesting that CNN-based methods may not be needed for mode clas-
sification tasks. The mode classifications from all four classifiers successfully approximated the known climatology of modes
in the United States, including a maximum in supercell occurrence in the U.S. Central Plains. Further, the modes also oc-
curred in environments recognized to support the three different storm morphologies. Finally, storm mode provided useful
information about hazard type, e.g., storm reports were most likely with supercells, further supporting the efficacy of the
classifiers. Future applications, including the use of objective CAMmode classifications as a novel predictor in ML systems,
could potentially lead to improved forecasts of convective hazards.

SIGNIFICANCE STATEMENT: Whether a thunderstorm produces hazards such as tornadoes, hail, or intense wind
gusts is in part determined by whether the storm takes the form of a single cell or a line. Numerical forecasting models
can now provide forecasts that depict this structure. We tested several automated algorithms to extract this information
from forecast output using machine learning. All of the automated methods were able to distinguish between a set of
three convective types, with the simple techniques providing similarly skilled classifications compared to the complex
approaches. The automated classifications also successfully discriminated between thunderstorm hazards, potentially
leading to new forecast tools and better forecasts of high-impact convective hazards.
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1. Introduction

The environmental and dynamical factors that determine
storm mode (e.g., whether convection is organized into cells
or lines) also influence the likelihood that storms will pro-
duce tornadoes, hail, and straight-line winds (Smith et al.
2012; Thompson et al. 2012). While environmental proper-
ties such as deep-layer wind shear and instability have been tra-
ditionally used to diagnose convective mode and hazards
(Thompson et al. 2003), more recent NWP model configura-
tions that partially resolve convection [i.e., convection-allowing
models (CAMs)] can explicitly depict convective mode and in
turn the potential for hazards, giving forecasters a macroscale
signal of the potential for unresolved, microscale hazards at
high spatial and temporal resolution. For example, the presence
of supercell storms in CAMs may suggest a higher chance of
tornadoes and severe hail, while bowing line segments indicate
a higher potential of severe winds (Smith et al. 2012).

Subjectively diagnosing the convective mode simulated by
CAMs presents multiple challenges stemming from the amount

of information to process and the subjective nature of mode
classification. A forecaster can often quickly assess the mode of
storms in a deterministic forecast, but doing so becomes bur-
densome when interrogating CAM ensembles (Jergensen et al.
2020), whose size, integration length, and update frequency are
likely to increase in the future (Stensrud et al. 2009). Further,
convective mode exists along a spectrum, resulting in storms
that do not fit cleanly into existing classification systems (Gallus
et al. 2008), necessitating the use of probabilities to represent
uncertainty. Automated convective mode diagnosis systems
propose to solve both of these issues by applying a consistent
identification process across datasets as large as computing
and latency requirements allow. Objective mode classification
could also benefit other problems, such as the identification of
different convective modes in convection-allowing climate
model output (e.g., Prein et al. 2015).

Multiple automated convective mode identification systems
have been developed over the past 20 years utilizing a mixture
of heuristic and machine learning (ML) approaches. The vast
majority of this work has focused on extracting mode from ob-
served radar observations. For example, Gagne et al. (2009)
evaluated the performance of decision trees and other ML
methods for discriminating between cellular and linear stormCorresponding author: Ryan A. Sobash, sobash@ucar.edu
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modes, while other decision-tree-based and ML-based systems
have also been developed (Lakshmanan et al. 2010; Lack and
Fox 2012; Kolodziej Hobson et al. 2012; Jergensen et al. 2020).
The output from the storm mode classification algorithms
have been used in various ways, including examining mode in
relation to National Weather Service warning performance
(Guillot et al. 2008; Brotzge et al. 2013). While these studies
have identified methods that excel at classifying storms in ra-
dar imagery, few studies have applied ML techniques to clas-
sify storms in CAMs (e.g., Potvin et al. 2022).

One of the main limiting factors for building ML classifica-
tion systems is the need for large amounts of labeled training
data. Gallus et al. (2008) hand labeled nearly 1000 storms by
reviewing radar images of the same storm at multiple times
and subjectively determined the primary storm morphology
for that period. Trapp et al. (2005b) and Smith et al. (2012) fo-
cused their hand-labeling efforts on storms that produced se-
vere weather reports. Doing so increases the likelihood of
labeling more mature storms of different modes, but biases
the sampled datasets toward supercell modes. If manual label-
ing is performed as part of existing forecaster duties, then
those labels can be used directly for ML training, as in the
case of frontal analysis (Biard and Kunkel 2019; Lagerquist
et al. 2019). While some large scale ML morphology projects
have crowd-sourced the labeling of their images (Lintott et al.
2011), distinguishing between convective modes requires
some degree of expert knowledge. Additional factors, such as
inconsistencies between human labels of the same storm, and
potential changes in the labeled training data (e.g., due to fre-
quent NWP model upgrades) make creating robust labeled
datasets challenging.

With the limitations of hand labeling in mind, scientists have
developed different classes of approaches to minimize the bur-
den of creating a training dataset. One solution is to build a
non-ML heuristic or rule-based automated algorithm to identify
mode (Lakshmanan and Smith 2009; Potvin et al. 2022). For in-
stance, the size, shape, and intensity properties of storm objects
can be used to infer storm mode given a set of rules. In Potvin
et al. (2022), a rule-based system provided useful classifications
of mode in observed radar and CAM output using only gridded
reflectivity and rotation fields. While these techniques may be
more transparent than fully trained ML models, they often can
only use a small number of input fields and typically do not pro-
vide uncertainty estimates. Other approaches aim to reduce the
dimensionality of the dataset to be labeled prior to hand label-
ing, for example with techniques such as principal component
analysis or using convolutional neural networks (CNNs) to ex-
tract relevant features from input imagery (e.g., Gagne et al.
2019). In this “representational learning” paradigm, hand labels
would only be needed to distinguish between modes in the low-
dimensional space, rather than across thousands of individual
storms.

Here, we evaluate four different ML and deep learning para-
digms to determine how well they can diagnose the mode of
simulated storms in a dataset of approximately 500 CAM fore-
casts over the contiguous United States, covering the next-day
time period (i.e., forecast lead times between 12 and 36 h). First,
a convective mode training dataset was constructed by hand

labeling thousands of storms present within a subset of the
CAM forecasts. Then, a set of four ML algorithms were trained:
a logistic regression, a dense neural network, a CNN, and a
semisupervised CNN/clustering-based algorithm. These four al-
gorithms differ in the type of input fields required (e.g., scalar
object-based properties such as size versus two-dimensional im-
agery such as reflectivity), as well as in their need for training
data. The CNN/clustering-based approach uses representational
learning to learn features and cluster with less human input
compared to the three fully supervised methods. To evaluate
the output from the classification systems, we use multiple eval-
uation approaches, including comparisons between the pre-
dicted convective mode and the “ground-truth” hand labels in
withheld training data, as well as using severe storm reports to
determine if the mode predictions are useful in anticipating con-
vective hazards. Together, these intercomparisons and evalua-
tions provide a set of best practices for using ML to classify
storm mode in CAM output.

2. Data and methods

a. Convection-allowing model forecast dataset

All of the ML algorithms examined in this work use a set of
convective storm objects extracted from deterministic forecasts
within a Weather Research and Forecasting (WRF)-based
convection-allowing model reforecast dataset generated at
the National Center for Atmospheric Research (NCAR).
This forecast dataset (henceforth referred to as the NCAR-
WRF) has been used in several prior studies (Sobash et al.
2019, 2020; Schwartz and Sobash 2019) to investigate the pre-
dictability and prediction of high-impact convective weather
events over the CONUS, including the application of ML algo-
rithms for convective hazard prediction (Sobash et al. 2020).
The original NCAR-WRF dataset in Sobash et al. (2019)
included 497 severe weather events occurring between
15 October 2010 and 15 July 2017 that were selected based
on their inclusion in the Storm Prediction Center (SPC) se-
vere weather event archive. Configurations for all NCAR-
WRF forecasts, including physics choices and a list of the
original set of simulated 2010–17 severe weather events, is
described in Sobash et al. (2019). Some notable WRF Model
configuration choices include the use of WRF version 3.6.1, at
0000 UTC operational GFS analyses and forecasts as initial and
boundary conditions, a computational domain spanning the en-
tire CONUS with 3-km horizontal grid spacing, and a 36-h fore-
cast integration length. In this work, we only use the 2010–16
NCAR-WRF forecasts, as described below.

b. Object segmentation and labeling

1) OBJECT SEGMENTATION AND PATCH EXTRACTION

Storm objects were identified in the NCAR-WRF forecasts
using the hysteresis segmentation method (Lakshmanan et al.
2009) in the hagelslag Python package (Gagne et al. 2017). In
hysteresis, storm centers are first identified as contiguous areas
that exceed a simulated composite radar reflectivity (CREF)
threshold of 50 dBZ. The hysteresis algorithm then expands
these storm centers in order from most intense to least intense
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by incorporating contiguous grid cells with CREF . 35 dBZ.
The hysteresis approach was preferred over other segmentation
techniques (e.g., enhanced watershed) because it keeps orga-
nized systems, such as mesoscale convective systems and squall
lines, together rather than segmenting them into many smaller
objects.

Storm object attributes (e.g., object size, shape, within-storm
and near-storm environment properties) and two-dimensional
storm patches were extracted from the NCAR-WRF dataset
using CREF output between forecast hours 12 and 35 (the
first 12 h of the forecast were not used to reduce issues with
model spinup). The majority of storm objects were disorga-
nized storms or regions of a storm not including the convective
cores (e.g., the stratiform area within a mesoscale convective
system). While storm objects were extracted for all 2010–16
NCAR-WRF forecasts, only objects within the 2013 subset of
NCAR-WRF forecasts that contained at least one grid point
with the magnitude of the hourly maximum 2–5 km above
ground level (AGL) updraft helicity (UH) $ 25 m2 s22 were
considered for hand labeling (including storms with both cy-
clonic and anticyclonic rotation). Applying these criteria re-
sulted in a sample of ;11 000 storms to be hand labeled.
This UH threshold was applied to focus on the most intense
convective storms, although this threshold is low enough to
include both disorganized and QLCS modes as well that
may not contain appreciable UH.

2) HAND-LABELING INTERFACE

Aweb interface was developed to assist with the hand-labeling
process (Fig. 1). The interface provided users with three different
types of plots and buttons to select both the storm mode and
their confidence in the classification. The images included simu-
lated CREF with swaths of high magnitude UH over the previ-
ous hour (|UH| $ 50 m2 s22) shaded in gray, 2-m temperature
with 10-m wind barbs, and most-unstable CAPE with 0–6 km
AGL wind shear barbs that together provide enough informa-
tion to make a determination of the convective mode. Each im-
age was centered on the centroid of the storm object and the
object to be labeled was contoured in black to distinguish be-
tween the storm of interest and other storms within the image
domain. The user was free to toggle between plots valid for the
forecast hour of the storm object, as well as the one and two pre-
vious and following forecast hours.

Possible labels for storm mode fell into three primary catego-
ries: disorganized (D), supercell (S), and quasi-linear (Q). These
categories were further divided into seven subtypes: disorganized
cell (D1), disorganized cluster (D2), isolated supercell (S1),
supercell(s) within a line (S2), supercell(s) in a cluster (S3), well-
developed bow echo (Q1), or squall line or smaller-scale convec-
tive line (Q2). These seven categories are similar to the primary
modes in Smith et al. (2012). Experts also quantified how confi-
dent they were in each storm label by providing an integer

FIG. 1. Web interface for mode classification. The storm to be classified is contoured in black in the center of the
CREF plot. An overlay provided the human classifier with the option to toggle between imagery valid at 0, 1, and 2 h
before and after the central time for three fields: CREF/10-m wind, 2-m temperature/10-m wind, and CAPE/deep
layer (0–6 km AGL) shear. Once the images were interrogated, the human classifier selected one of the 7 modes and
a confidence rating.
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between one and five, with one being the least confident and five
being the most. Through the web interface, each storm’s label
and confidence rating were stored in a database, although the
confidence ratings are not used in this work.

Several labeling campaigns were completed with 10 differ-
ent experts contributing to the labeling, including the authors,
NCAR scientists, and two severe weather forecasters from the
SPC. The interface was designed such that a user would login
and see a random storm from a batch of 500 storms. Each
batch consisted of a random collection of storms among the re-
duced set of ;11000 storms in the 2013 NCAR-WRF fore-
casts. Initially, each storm was labeled five times to provide an
indication of uncertainty in the classification. Once all 500
storms received five labels, storms from the next batch would
be shown to the human classifiers. This constraint was later re-
laxed so each storm was only labeled by one human in order
to obtain a larger diversity of storms. To be consistent, only
the first hand label was used for all storms. Among the subset
of storms with 5 labels, 90% had a consensus label for the pri-
mary category (i.e., three experts in agreement); there was
more disagreement when considering the subtypes.

The final hand-labeled storm mode dataset consisted of
2627 storms. Roughly 58% of these storms were labeled as dis-
organized, while 26% and 16% were labeled as supercells and
quasi-linear convective systems (QLCSs), respectively. The
full labeled dataset of storms from the 2013 NCAR-WRF fore-
casts was split such that storms in forecasts initialized between
1 January 2013 and 24 June 2013 were used for training the su-
pervised ML models (1871 storms), while forecasts initialized
between 25 June 2013 and 31 December 2013 were used for
testing (756 storms). All ML models were trained to predict

the three primary categories of modes, given that the differ-
ences between the subtypes were more subtle and some sub-
types only contained a small sample of storms (e.g., the Q1
category contained only 21 storms). Finally, given the similari-
ties between the S2 category and the Q1 and Q2 categories,
we chose to include the S2 storms in the QLCS category, this
produced more skillful predictions of QLCSs without impact-
ing the skill of the other two primary categories.

3) PROPERTIES OF HAND-LABELED STORMS

The distributions of object and storm intensity properties
were examined in the set of 2627 hand-labeled storms to assess
how the human classifications matched the intuition of how
various properties associated with each mode should behave
(Fig. 2). For example, the storms identified as supercells
tended to have larger object maximum UH and updraft
speeds than QLCSs and disorganized storms (Figs. 2a,b).
The median object maximum UH value for supercells was
88 m2 s22, while for the disorganized cells the median object
maximum UH was 33 m2 s22. The storms labeled as QLCSs
had larger object maximum surface wind speeds, areas, and
major axis lengths than the supercells and disorganized storms,
and tended to occur slightly later in the day (Figs. 2c–f). For
example, the median object forecast hours were 25, 24, and 23
for QLCSs, supercells, and disorganized storms, respectively,
and the QLCS distribution had a larger fraction of storms oc-
curring at forecast hours . 26 compared to the supercells and
disorganized storm distributions.

Together, these statistics provide evidence that the labeling
process was able to effectively distinguish between supercells,

FIG. 2. Violin plots consisting of kernel density estimates of the distributions of (a) object-maximum UH, (b) object-maximum hourly
maximum updraft speed, (c) object-maximum hourly maximum 10-m wind speed, (d) object area, (e) object major axis length, and
(f) forecast hour, relative to 0000 UTC, for all 2627 storms labeled as supercells, QLCSs, or disorganized by the human classifiers. The
median values of each distribution are provided within each violin.
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QLCSs, and disorganized storms. While differences in these dis-
tributions among the three modes exist, they often exhibit sub-
stantial overlap. For example, based on the present set of human
mode classifications, solely using a UH threshold of 75 m2 s22 to
identify supercells (e.g., Sobash et al. 2016, 2019) would inevita-
bly lead to a large number of QLCSs being incorrectly classified
as supercells (Fig. 2a). Further, producing a binary classification
does not provide information related to the certainty of the clas-
sifications. Thus, we explore the use of four different statistical
andML classifiers, ranging in complexity, to provide probabilistic
classifications of CAM storm mode using the hand-labeled storm
dataset as truth.

c. ML models

1) FULLY SUPERVISED CONVOLUTIONAL

NEURAL NETWORK

The hand-labeled storm dataset was used to train a CNN to
predict a simulated storm’s convective mode. A CNN is able
to identify spatial features, such as gradients in reflectivity,
within the storm patches and relate those to convective mode,
guided by a hand-labeled training dataset. The design of the
CNN was similar to that used in Gagne et al. (2019), with
slightly different hyperparameters due to the larger size of the
input fields; the high-level architecture is provided in Fig. 3.
Specifically, the patches had a radius of 32 grid points, which is
twice the size of the storm patches in Gagne et al. (2019),
and an initial set of 16 filters. The larger patch size necessi-
tated having twice as many convolutional and pooling layers
(conv1pool), since each conv1pool layer reduces the radius
of the patch by one-half. Each storm patch was centered on
the storm centroid and only two fields were input to the
CNNs: two-dimensional CREF and UH. Thus, the input
field was 64 3 64 3 2 in size. Then, 4 conv1pool layers re-
duced the output to 4 3 4 3 128, with the final dense and
output layers consisting of 9 and 3 neurons, respectively. The
output consisted of the probability that a storm was a supercell,
QLCS, or disorganized. As in Gagne et al. (2019), dropout was
used throughout the CNN during training, with a 20% dropout
rate. Batch normalization was not used. Further details of the
model configuration can be found in Gagne et al. (2019).

Given the relatively small size of the training dataset (i.e.,
1871 storms), image augmentation was used to increase the
training dataset size. Using augmentation was possible since the
labeled convective mode does not change with image rotation
(i.e., a rotated storm should be classified identically to a nonro-
tated storm). Each storm was rotated by 2.58, between 2908
and 908, producing 72 augmented storms for each labeled
storm. Thus, the final training dataset for the CNN consisted of
136 583 images. The image augmentation approach substan-
tially improved model performance, especially since the labels
were unevenly divided between the three storm modes (e.g.,
only 16% of the 1871 labeled storms were classified as QLCSs).

2) FULLY SUPERVISED DENSE NEURAL NETWORK

A dense neural network (DNN) was trained to compare to
the CNN. The DNN uses scalar storm object properties as in-
put predictors, rather than the 2D storm patches in the CNN

(Fig. 3). The same training dataset was used to train the DNN,
consisting of 1871 storms, and did not use the augmented set
of images that was used to train the CNN. While a large set of
storm object properties was considered for training, a small
subset of 10 predictors were used, guided by a correlation clus-
tering analysis. These 10 predictors are provided in Table 1
and were chosen to include predictors that were not strongly
correlated, providing independent information. The DNN ar-
chitecture was designed similarly to Sobash et al. (2020), al-
though here we used two hidden layers with 16 neurons,
rather than one hidden layer and 1024 neurons in Sobash et al.
(2020), given the smaller number of input fields. The output
was identical to the CNN, including three probabilities for the
supercell, QLCS, and disorganized storm modes.

3) SEMISUPERVISED CNN–GAUSSIAN MIXTURE MODEL

Creating a hand-labeled training dataset is often labor inten-
sive and imposes recurring costs on fully supervised ML mod-
els. In addition to issues with inconsistent labels, if the initial
segmentation approach is altered or the underlying forecast
system is upgraded, then a new round of hand labeling may be
necessary and old labels may need to be discarded. Creating
new ways to reduce the amount of hand labeling would make
ML emulation of expert analysis more sustainable.

Here, we tested a semisupervised learning approach to de-
termine if a hand-labeled training dataset was necessary to
produce useful mode classifications. A CNN was trained to
predict the probability of occurrence of three storm features
related to mode (i.e., a proxy task): UH in the hour following
the valid time of the storm exceeding 75 m2 s22, storm object
eccentricity exceeding 0.95, and the storm major axis length
exceeding 75 km. The CNN architecture in the semisupervised
approach was similar to the architecture of the fully supervised
CNN, consisting of four conv1pool layers with increasing fil-
ter widths, followed by a bottleneck dense latent vector of 128
neurons before the classification output (Fig. 3). The semisu-
pervised CNN was trained with a significantly larger set of
storms than the supervised methods, including all storm ob-
jects in the 2010–15 NCAR-WRF forecasts, but excluding the
set of 2013 NCAR-WRF forecasts used as a withheld testing
dataset for the supervised ML models.

After training, inference was run on the training data and
the activation values from the dense latent layer were sepa-
rated into 25 clusters using a Gaussian mixture model (GMM;
Fig. 3). A number of clustering techniques could be used; how-
ever, we found a GMM a good choice for a variety of reasons:
(i) its soft clustering attribute, which provides probabilistic
output; (ii) its ability to account for sample covariance among
a potential cluster, which can identify hyperellipsoids; (iii) its
ability to provide out-of-sample predictions; and (iv) its rela-
tively low computational cost. In a perfect scenario, only three
clusters would be needed, one for each representative mode.
However, as the model is likely to pick up on many other fea-
tures not perfectly correlated with convective mode, we found
that by increasing the number of clusters we could more effec-
tively tease apart mode by individually assigning each of the
25 clusters to one of the three convective modes.
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After clustering, each cluster was assigned to one of the three
primary modes by a human by examining a set of representative
storms. The representative storms were chosen by selecting ex-
amples from among the storms that had the highest probability
of being in the cluster as well as those that achieved a plurality
of probability for that cluster. An interactive python interface

was developed to quickly perform the bulk labeling and shown
in Fig. 4. These new labels and probabilities were then as-
signed to unseen storm patches according to their cluster as-
signment. With this method, bulk labeling of an arbitrary sized
dataset was performed in a small amount of time (i.e., less
than an hour).

Proxy Label

Gaussian
Mixture
Model

Convolutional Layers Latent Vector

Mode Label

Convolutional Layers Latent
Vector

Mode Label

Latent Vector

Storm Patch

Storm Patch

Storm Attributes

DNN

CNN

CNN-
GMM

Step 2

Bulk Labeling
of Clusters

(Human)

CNN-
GMM

Step 1

Mixture of 25 Components

Output

Output

FIG. 3. Basic architecture for the DNN, CNN, and GMM machine learning models. The LR is not shown. Mode la-
bel and proxy label boxes indicate the dataset used for training each model. All classifiers output three probabilities,
one for each convective mode.
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4) LOGISTIC REGRESSION

Multinomial logistic regression (LR), i.e., LR that permits
multiclass output, was used as a simple supervised ML model
for comparison to the three more complex ML methods. LR
is desirable since it can output probabilities and has a limited
set of parameters to tune. To keep the LR model as simple as
possible, only three predictors were used: object maximum
UH, object area, and object major axis length. These three
predictors were selected due to their ability to discriminate
between the distributions in Fig. 2 (e.g., there is limited over-
lap between the supercell and disorganized modes for object
maximum UH, while area can discriminate between the cells
and linear modes). L2 regularization was used with the regu-
larization strength set to 1.0 (the python scikit-learn defaults).
The LR model was fit using data from the training dataset

only, as in the CNN and DNN systems, and produced three
probabilities, one for each of the three primary modes.

3. Results

Given that a ground-truth dataset for convective mode is
not easily obtained, we rely on a suite of analysis methods to
validate the automated storm mode classifications. First, we
examine the output of the classifiers for several cases in the
2016 NCAR-WRF set of forecasts, an independent dataset
not used in the training of any of the ML models. Next, we
utilize the withheld hand-labeled data from the storms within
the 2013 NCAR-WRF forecasts and compute objective verifi-
cation statistics. Finally, the set of storm objects extracted
from the 2016 NCAR-WRF forecasts was used to infer indi-
rectly the robustness of the mode classifications, including us-
ing storm reports as a proxy for mode, as well as examining
the spatial and temporal climatologies of mode occurrence.

a. Example classifications within 2016 NCAR-
WRF forecasts

To summarize the characteristics of storms that generate
similar predictions among the four different classification al-
gorithms, the CREF presentations of the top five storms with
the highest average probability across the four classifiers for
each of the three modes are shown in Fig. 5. Each panel is
centered on the storm, with the thick black line indicating the
boundary of the storm object identified by the object-finding
algorithm described in section 2b, and used in the DNN and

TABLE 1. Input fields used in the DNN classification system.

1. Centroid latitude
2. Centroid longitude
3. Forecast hour
4. Major axis length
5. Object eccentricity
6. Hourly maximum object-maximum 2–5 km AGL updraft

helicity
7. Hourly maximum object-mean column-max updraft speed
8. Hourly maximum object-mean column-integrated graupel
9. Environmental maximum surface-based lifted condensation level
10. Environmental minimum zonal component of Bunkers motion

FIG. 4. Python Jupyter widget interface for bulk labeling of storms based on GMM cluster assignment. (left) Storms with the highest prob-
ability of belonging to that cluster and (right) the lowest probability storms that were still identified as that cluster.
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LR classifiers. All 15 storms were chosen from different ini-
tialization times to document classifications from different
events.

For all 15 storms, the average probability was $97%, indi-
cating agreement among the four classification algorithms.
The five supercells possessed a CREF structure characteristic
of supercells, including a forward flank precipitation region
and strong updraft rotation as inferred by the swaths of hourly
maximum UH (Figs. 5a–e). In fact, all five of these storms
possessed hourly maximum UH . 300 m2 s22, well above the
typical threshold (75 m2 s22) used to identify severe convec-
tion within CAMs (Sobash et al. 2011, 2016). These five storms
were also discrete, with limited interactions with nearby
storms. In contrast to the supercells, the five storms classified
as QLCSs all had objects that were larger than the supercells,
composed of objects with large major axis lengths relative to
their minor axes (Figs. 5f–j). For the five QLCSs, the maxi-
mum within-object UH was between 76 and 137 m2 s22, which
was lower than the supercells but still high enough to be iden-
tified as severe convection using typical UH thresholds, under-
scoring the difficulty of identifying only supercells with UH
alone. Finally, the five disorganized storms with the highest
probabilities were very small objects and often embedded
within regions of other disorganized convection. The maxi-
mum within-object UH for these storms was ,3 m2 s22. Over-
all, it appears that the four algorithms can provide objective
classifications that match subjective impressions for a set of ar-
chetypal examples of each mode.

In contrast to the set of 15 storms where the four classifiers
agreed, in many instances the classifiers disagreed on the

mode, reflecting either uncertainty in the storm mode or a
deficiency in a particular classification algorithm at predict-
ing convective mode. To investigate these situations, we
identified 15 random storms, from different 2016 NCAR-
WRF initializations, where three different modes were pre-
dicted among the four classifiers (Fig. 6). All 15 of these
storms were more challenging to subjectively classify than
the 15 storms in Fig. 5. The CREF structure in many of
these examples was more disorganized, although in several
instances (e.g., storms in Figs. 6a,c,k,n) linear structures
were apparent in the CREF field, although on smaller scales
than the storms in Figs. 5f–j. The four classifiers depicted
this uncertainty in two ways: 1) by producing three different
estimations of the mode, as determined for each classifier by
the mode with the highest probability, and 2) by producing
lower probability values for the determined mode. For exam-
ple, for the storm in Fig. 6g, the highest probability among the
three modes for the LR classifier is only 39%, indicating that
the three mode probabilities were similar. Given the likely
subjective uncertainties in how a human would classify these
15 storms, it is promising that the ML algorithms can objec-
tively reflect this uncertainty in the probability magnitudes.

Another way to assess the storm morphologies that produce
spread among the classifications can be provided by looking at
the variance among the probabilities for a particular storm
across the four classifiers. The five storms with the highest var-
iance among the mode probabilities were selected for further
interrogation (Fig. 7). For nearly all of these storms, the high
variance arises due to two classifiers producing probabilities
near 1 and the other two producing probabilities near 0.

FIG. 5. Five storms with the highest average classification probabilities for the (a)–(e) supercell, (f)–(j) QLCS, and (k)–(o) disorganized
classes. CREF (dBZ; color fill), UH . 75 m2 s22 (thin black contour and gray fill), 10-m wind speed and direction (kt; 1 kt ’ 0.51 m s21;
barbs), and storm object boundary (thick black contour) are shown in each panel, along with the probability from each classifier. Forecast
initialization time and valid hour are annotated in the upper left of each panel.
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In most cases, the LR probabilities were strongly correlated
with the DNN probabilities, since both used storm object prop-
erties as predictors. Correlation coefficients computed with the
set of;40000 storms in the 2016 NCAR-WRF dataset demon-
strate these relationships, with the DNN and LR predictions
having a correlation coefficient . 0.9 for all three modes
(Fig. 8). Other correlations, e.g., between the DNN and CNN,
or the DNN and GMM, were lower, ranging between 0.72 and
0.83 for the different modes. The CNN and GMM, although
both using a CNN to identify features, were less correlated than
the DNN and LR (Fig. 8), although in the examples in Fig. 7,
the CNN and GMM generated similar probabilities.

Among the five storms with the highest variance in the super-
cell probabilities (Figs. 7a–e), the LR and DNN classifiers pro-
duced high probabilities for the three storms in Figs. 7a–c, while
the GMM and CNN approaches produce probabilities # 6%.
For these three storms, the high UHmagnitudes (all three storms
had object-maximum UH values . 200 m2 s22) likely played a
role in the generation of high supercell probabilities for the LR
and DNN classifiers, while the CNN and GMM may have relied
more on the CREF structures and less on the underlying UH
magnitudes, leading to lower supercell probabilities. Even though
the object-maximum UH was large, the storm object in Fig. 7a
was very small, and a larger intense storm was located just north
of the object to be classified. While the input for the DNN and
LR only has information related to the storm object, the CNN
and GMM are influenced by the entire scene surrounding the
central storm. Interestingly, both the CNN and GMM classified
this storm as disorganized, with probabilities greater than 95%.
The cases in Figs. 7d and 7e were both situations where the
GMM was an outlier. While clearly a supercell, the GMM

produced a prediction of 0 for the storm in Fig. 7d, while the
other three classifiers had supercell probabilities near 100%, and
vice versa for the disorganized storm in Fig. 7e. It is unclear why
the GMM was not able to correctly classify these storms, but the
tendency for the GMM to produce predictions near 0 and 1 will
be discussed in section 3b.

For the five storms with the largest QLCS probability variance,
the LR and DNN produced high probabilities of QLCSs, while
the CNN and GMM probabilities were near zero (Figs. 7f–j),
similar to the storms in Figs. 7a–d. All of these cases con-
sisted of disorganized linear convective modes. The large
area of the objects likely influenced the LR and DNN pre-
dictions, while the CNN and GMM weighted more heavily
the disorganized CREF structure. In the case of the storm in
Fig. 7f, the centroid of the storm was in an area with CREF5 0,
thus the CNN and GMM were not well suited to provide accu-
rate classifications. Finally, three of the storms with large
variance in the disorganized probabilities were similar to
the QLCS examples, in that the LR and DNN techniques pro-
duced low disorganized probabilities due to the larger object
size (Figs. 7l,m,o). While these subjective examinations re-
vealed important distinctions about the robustness of the clas-
sification algorithms across a wide spectrum of convective
morphologies, objective validation is necessary to examine the
performance over a large collection of classified storms.

b. Objective evaluation of classifiers using withheld 2013
NCAR-WRF forecasts

To objectively compare the performance of the four proba-
bilistic classifiers, we first provide verification metrics using
the withheld validation dataset of 756 hand-labeled storms.

FIG. 6. As in Fig. 5, but for 15 randomly chosen storms where the four classifiers produced three different predictions of the convective
mode. The highest probability and mode from each classifier is provided in each panel (S, Q, D, indicate supercell, QLCS, and disorga-
nized, respectively).
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Two probabilistic forecast verification metrics were used to
summarize the probabilistic classification performance for each
of the three modes: the area under the receiver operating char-
acteristic curve (ROCA; Mason 1982), a measure of forecast
discrimination, and the Brier skill score (BSS; Murphy 1973), a
measure of the skill of the forecasts relative to the climatology.
In this case, climatology is the fraction of storms of a particular
mode within the validation dataset (i.e., the base rate). Since
the 756 storm testing dataset was not evenly divided among the
three modes, the supercell, QLCS, and disorganized modes had
base rates of 0.15, 0.15, and 0.7, respectively. Reliability dia-
grams and the reliability component of the Brier Score were
used to assess the calibration of the probabilistic classifications,
while confusion matrices (i.e., contingency tables) were produced

to determine how well the four classifiers could place each storm
into the correct mode category using the maximum of the three
probability values.

The distributions of probabilities for the three modes reveal
differences in how the four classifiers generated probabilities
for the testing sample storms (Fig. 9). Probabilities were as-
signed to storms in similar ways for both the DNN and LR
across all three modes. The CNN also generated similar predic-
tions to the DNN and LR, although the number of QLCS prob-
abilities$ 70% is smaller than the DNN and LR (Fig. 9a). This
may be due to the limited size of the patches, compared to the
DNN and LR which used features directly related to storm size
and shape. On the other hand, the GMM algorithm produced
substantially smaller numbers of midrange probability values

FIG. 7. As in Fig. 5, but for storms with the largest variance among the four (a)–(e) supercell, (f)–(j) QLCS, and (k)–(o) disorganized
predictions.

FIG. 8. Correlation matrices for the (a) supercell, (b) QLCS, and (c) disorganized predictions from the four classifiers for all;40000 storms
in the 2016 NCAR-WRF dataset. Darker shading indicates higher correlation.
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for the three modes, tending to prefer to classify storms within
the extreme bins (i.e., either 0%–10% or 90%–100%).

In terms of classification accuracy, the four classifiers per-
formed differently for each of the three modes (Fig. 10). The
LR was the most accurate at classifying the true disorganized
storms (i.e., storms labeled as disorganized by human classi-
fiers) as disorganized, followed by the CNN, DNN, and the
GMM. Given that 70% of the storms in the test dataset were
disorganized, this should be the easiest classification task, and
all four classifiers were .85% accurate for the true disorga-
nized storms. For the other two classes, the GMM performed
the best, classifying 65% of the true supercells and QLCSs
into the correct category, while the CNN performed the worst,
only correctly classifying 31% and 51% of the QLCSs and
supercells correctly (Fig. 10). In fact, the CNN classified most
of the true QLCSs as disorganized (68%). This behavior was
likely due to the fact that the GMM produced sharper proba-
bilities (Fig. 9), while the CNN and DNN produced probabili-
ties with more uncertainty. In many cases, two or three of the
modes may have similar probabilities, yet the confusion matri-
ces reduce this information into a single choice. Probabilistic
metrics such as the ROCA and BSS provide a better view of
the probabilistic distributions from each of the classifiers.

In general, the CNN and DNN both produced predictions
with high values of ROCA (0.88–0.92) and BSSs (0.29–0.45;
Fig. 11). The DNN had the highest BSS and ROCA for all
three modes, especially for the QLCS and disorganized modes.
The verification metrics among the four classifiers were most
similar for the supercellular mode, potentially due to the
unique properties of supercells, such as large UH and small

object sizes (whereas disorganized and QLCS storm modes
took on a much larger variety of shapes, sizes, and intensities).
While the GMM predictions had similar ROCA values to the
CNN and DNN predictions, the BSSs were much lower, indi-
cating poor calibration. While the GMM BSSs were highest
for supercells (;0.3), the GMM BSSs for the QLCSs were
near zero, indicating the forecasts were no better than using a
QLCS base rate forecast of 15% for every storm. Finally, the
LR was competitive with the other three classifiers, producing
large ROCA and high BSS, although slightly smaller than the
DNN metrics.

Of the four classifiers, the DNN produced the best calibrated
probabilities for the storms in the test dataset, with the smallest
reliability component of the Brier score for all three modes
(Fig. 12). The CNN and LR both underpredicted the supercell
probabilities and overpredicted the disorganized probabilities
for most probability bins, while the QLCS probabilities were
better calibrated (Figs. 12a,d). The GMM probabilities were
poorly calibrated, with much larger Brier score reliability com-
ponent values than the other three methods (Fig. 12c). Given
the larger number of storms with probabilities in the smallest
(0%–10%) and largest (90%–100%) bins compared to the
other methods, the sample size for the intermediate bins is less
(Fig. 9), hence the large variations in the observed relative fre-
quency. Even though the GMM probabilities were miscali-
brated, the GMM was still useful as a tool to classify the mode
of each storm (e.g., the GMM classifications in Fig. 10c for the
QLCS and Supercell storms were slightly better than the other
three techniques). Given the small size of the test dataset, fur-
ther evaluations are needed. Thus, we extend the evaluation to

FIG. 9. Histograms of (a) QLCS, (b) supercell, and (c) disorganized probabilities from the four
classifiers for all storms within the 2013 NCAR-WRF test dataset. Probabilities aggregated into
10% bins (0%–9%, 10%–19%, etc.).
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examine the climatologies of the different mode classifications
in the following subsection.

c. Climatology of storm modes within 2016
NCAR-WRF forecasts

To examine differences in the spatial climatology of storm
modes among the four classification methods, the density of
storms for the three modes was obtained using the centroid lo-
cations for the storm objects in the 2016 NCAR-WRF forecast
dataset. The centroid locations for all storms assigned a partic-
ular mode across all forecasts were aggregated to construct a
density estimate, using kernel density estimation (Fig. 13). The
differences in the mode climatologies for the four different
classification methods were relatively small, with all depicting
distributions transitioning from supercells, to QLCS, to disor-
ganized with west-to-east extent across the CONUS. All four
methods produced the highest density of supercells within the
central Plains, with the density decreasing to the east. The

GMM method classified more storms as supercells over the
eastern CONUS, as indicated by closed density contours in
the mid-Atlantic and Florida (Fig. 13b). The CNN also gener-
ated relative maxima in these areas (Fig. 13a), while the DNN
and LR methods did not (Figs. 13c,d). The disorganized storm
mode was most common across the eastern CONUS, with the
QLCS mode in between the supercell and disorganized mode
maxima, with very similar depictions of storm density for all
four methods for these two modes. In general, the climatolo-
gies matched subjective intuition of where and when these
three modes most often occur within the CONUS (Smith et al.
2012; Ashley et al. 2019).

While the spatial climatologies are similar, the diurnal distri-
butions for each mode vary among the four classifiers (Fig. 14).
The peaks among the four classifiers for each mode are similar
(early afternoon for disorganized, late afternoon and early
evening for supercells, and early evening and overnight for
QLCSs), but the number of storms per model run varies

FIG. 10. Confusion matrices for the (a) CNN, (b) DNN, (c) GMM, and (d) LR predictions using the set of 756
hand-labeled storms in the test dataset. Predicted mode determined by the mode possessing the largest probability
value for each storm. The number of storms and the fraction of storms relative to the total number of hand-labeled
storms for each mode are provided in each quadrant. Darker shading indicates a higher fraction of storms.
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such that the GMM produces more QLCS and supercell classi-
fications than the other three methods. The CNN was the least
likely model to produce QLCSs. These relative differences
were fairly consistent throughout the forecast period.

Given that CAPE and 0–6 km AGL bulk shear (shear)
are the primary environmental parameters used to distin-
guish between convective modes, these two parameters
were examined for each storm for the three modes, with

FIG. 11. Area under the receiver operating characteristic curve (ROCA) and the Brier skill score (BSS) for each mode, using the proba-
bilities from the four classifiers for the 756 hand-labeled storms in the testing dataset. Also shown is the ROCA and BSS for the average
CNN and DNN predictions.

FIG. 12. Reliability diagrams for the (a) CNN, (b) DNN, (c) GMM, and (d) LR predictions for the 756 hand-labeled
storms in the testing dataset and for each of the three modes. The reliability component of the Brier score is provided
in each panel. Probabilities aggregated into 10% bins (0%–9%, 10%–19%, etc.).
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two-dimensional distributions computed for these parameters in
CAPE–shear space (Fig. 15). A clear distinction in the environ-
mental parameters exists among the three modes, with storms
classified as supercells containing larger CAPE and shear, while
storms classified as disorganized occurred in environments con-
taining less CAPE and shear. Storms classified as QLCS oc-
curred in smaller CAPE environments compared to much
of the distribution of supercells and disorganized storms,
while the distribution of shear magnitudes straddled these
two other distributions. One possible explanation for the
lower CAPE magnitudes is that the environmental charac-
teristics are computed using the mean properties within
the storm boundaries at time t using fields valid at forecast
hour t 2 1. Since QLCS objects are larger, sometimes sub-
stantially so, compared to supercell and disorganized
modes, the object mean properties are likely reduced.

d. Evaluation of 2016 NCAR-WRF mode probabilities
with storm reports

Anothermethod to evaluate the convectivemode classification
output is to compare the mode probabilities to the occurrence of
the three storm report types (i.e., hail, wind, or tornado). A rela-
tionship should exist between mode and storm report frequency,
assuming that the ML techniques are successful at classifying
modes in CAMoutput and that the CAMmode forecasts are ac-
curate. For example, tornadoes should be most common with
supercells and least common within disorganized convection. To
do so, the object-based mode classifications were placed on a bi-
nary 80-km grid. Each storm’s mode was determined by the

highest of the three mode probabilities, then, each 3-km NCAR-
WRF grid point within the storm object was mapped to the clos-
est 80-km grid box. This procedure produced a binary field for
each mode indicating the 80-km grid boxes where a particular
mode occurred at each forecast hour. Conditional probabilities of
a storm report occurring in associationwith eachmodewere then
computed by evaluating the fraction of 80-km grid boxes where
at least one storm report occurred within 2 h and 1 grid box (i.e.,
approximately 80 km) of the central grid box. These probabilities
were computed for each mode and storm report type, as well as
for the occurrence of any storm report (i.e., a total of 12 condi-
tional probabilities for each classifier).

Similar to the results in the previous section, simply using
the binary output from the classifiers produced similar results
(Fig. 16). For example, at least one storm report of any type
occurred near 55% of the grid boxes where a supercell was
present in the model output, the highest of the three modes,
while the probability of any report near QLCSs and disorga-
nized storms was approximately 30%–35%. This was true for
all four classifiers. Among the three report types, the condi-
tional probabilities were highest for supercells, with hail and
wind reports occurring across 40%–45% of grid boxes and
tornadoes across 10%–15% of grid boxes (Fig. 16). Again,
this was similar for the four classifiers. In contrast to the
supercells, wind reports (30%–35%) were more likely than
hail reports (10%–15%) for both the QLCSs and disorga-
nized modes, while wind reports were slightly more com-
mon in QLCSs (30%–35%) than in disorganized modes
(25%–30%).

FIG. 13. Kernel density estimate of the centroids of all 2016 NCAR-WRF storms classified as (red) supercells,
(blue) QLCSs, and (green) disorganized for the (a) CNN, (b) GMM, (c) DNN, and (d) LR classifiers. Density con-
tours of 0.5, 0.66, and 0.83 are shown for each mode.
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In addition to using the gridded binary mode fields, we also
computed conditional probabilities using subsets of storms
within different mode probability bins. Specifically, we com-
puted conditional probabilities for 10 different mode probabil-
ity bins, in 10% increments using the storm centroid locations
and the occurrence of a storm report within 80 km and 2 h of
the centroid location and time (Fig. 17). Using the LR classifica-
tions, the probability of occurrence of all severe report types
increases sharply as the probability of supercell increases
(Fig. 17a). The storms having supercell probabilities . 80%
have the highest conditional probabilities of a storm report, in-
dicating that the presence of supercells in CAM forecasts is the
strongest mode-related predictor of the occurrence of severe
weather reports. Specifically, for storms with a supercell proba-
bility . 90%, the probability of any report occurring is nearly
50%, while the hail and wind probabilities are both near 35%.
The tornado probabilities for these storms is the highest of all
three modes, at 15%, which is slightly higher than the results in
Fig. 16. The conditional probability of a report is less dependent
on the QLCS probability, although the wind probabilities do in-
crease from 15% to 25% as the probability of a QLCS increases
(Fig. 17b). In part, this may be due to the fact that the centroid
of a QLCS may only encompass a small part of the overall con-
vective system, thus being less representative of whether the
storm will produce severe reports. Finally, the probability of a
storm report occurring within 80 km and 2 h decreases as the
probability that the storm is disorganized increases (Fig. 17c),
with wind reports being slightly more likely than hail reports
for these storms.

The other three classifiers (CNN, DNN, and GMM) had
slightly different depictions for these conditional report proba-
bilities (not shown). In general, the relationship between likely
mode and reports was much weaker for the GMM classifica-
tions, suggesting that the GMM had less skill at distinguishing
between modes and their likely hazards due to poor calibra-
tion of the probabilities.

Overall, these results mimic prior work that has studied the
likelihood of severe report types from different observed modes,
but here we have applied such a method to CAM forecasts. For
instance, Gallus et al. (2008) found that supercells produce a dis-
proportionate share of severe weather reports among different
convective modes and that disorganized modes often do not
produce severe weather. The 10%–15% conditional probability
of a tornado given a supercell (Fig. 16) is nearly identical to the
15% of observed midlevel mesocyclones that were associated
with tornadoes in Trapp et al. (2005a). Together, these results
provide evidence that the ML-based mode classifications are
providing useful information regarding the actual modes present
within the CAM forecasts. Further, the conditional report prob-
abilities also provide evidence that a relationship exists between
the occurrence of different convective modes in CAM output
and different types of severe weather hazards, which has not
been documented in prior work.

4. Summary and discussion

Four different ML algorithms were used to objectively clas-
sify the modes present in a large set of 3-km horizontal grid

FIG. 14. The average number of 2016 NCAR-WRF storms per model run classified as
(a) supercells, (b) QLCSs, and (c) disorganized for each forecast hour for the CNN
(blue), GMM (orange) DNN, (green), and LR (red) classifiers.
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spacing CAM forecasts, i.e., the NCAR-WRF. Each algorithm
assigned three probabilities to each CAM storm object, one
for each of three modes: supercell, QLCS, and disorganized.
The four ML models ranged in their complexity, and included
simpler techniques such as LR and a DNN, and more complex
algorithms such as the CNN and GMM. Three were trained
with a custom-generated hand-labeled CAM mode dataset
(i.e., supervised ML), while one used CNNs with proxy targets,
e.g., UH and object size, to infer mode, followed by clustering
using a GMM (i.e., semisupervised ML). Two of the ML ap-
proaches used scalar storm object attributes and environmental
properties, while the other two used two-dimensional patches of
CAM output fields such as CREF. The various flavors of ML
techniques allowed for a thorough examination of the strengths
and weaknesses of each approach.

Validation of the mode classifications included a mix of objec-
tive verification metrics such as the ROCA, BSS, and reliability
using a withheld testing dataset, examinations of mode climatol-
ogies, and a comparison between ML determined modes and
storm reports. All four techniques produced predictions with
large ROCA (.0.87) when evaluating with the withheld hand-
labeled testing data, indicating the ability to discriminate be-
tween modes. The DNN, CNN, and LR produced large BSSs
(.0.3) for all three modes, indicating good discrimination and
calibration. The GMM calibration was poor compared to the
other 3 methods, especially for QLCSs, and tended to produce

more high (.90%) and low (,10%) probabilities than the
other methods. In spite of the calibration issues, the GMM
produced similar storm mode climatologies compared to the
CNN, LR, and DNN; the mis-calibration did not impact the
assignment of a particular mode to a storm. Spatial and tem-
poral climatologies of mode classifications of storms within
2016 NCAR-WRF forecasts revealed that all methods cap-
tured roughly the same spatial extent and diurnal cycle for
each model, but with differences in absolute frequency de-
pending on the model used. The GMM labeled the fewest
storms as disorganized and captured more QLCS events
compared with other methods. Finally, a strong relationship
existed between the three modes and the likelihood of dif-
ferent storm report types. This relationship not only bolsters
the credibility of the mode classifications, but also provides
an indirect assessment of the CAM mode predictions (if the
CAM forecasts of mode were erroneous, then such a rela-
tionship would likely not be as robust).

The similarities among the evaluations for the DNN, LR,
and CNN suggest that simple ML approaches can provide re-
liable depictions of the convective mode within CAM fore-
casts, and that the added complexity of using more complex
algorithms, while providing some small benefit in the objec-
tive metrics for our small test dataset, may not be warranted.
It is intriguing that the LR and DNN techniques were able to
be successfully trained with ;1500 storms and did not require

FIG. 15. Kernel density estimate of the CAPE–Shear parameters for all 2016 NCAR-WRF storms classified as
supercells (red), QLCSs (blue), and disorganized (green) for the (a) CNN, (b) GMM, (c) DNN, and (d) LR classi-
fiers. Density contours of 0.25, 0.375, 0.5, 0.625, and 0.85 are shown for each mode.
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the usage of data augmentation, as was used to train the
CNN. Thus, for this particular problem, an LR or DNN, using
a small set of predictors related to object size and intensity,
may provide sufficient performance. The size of the patch
used as input in the CNN, as well as the presence of multiple
storms in the patch, may also have led to suboptimal perfor-
mance compared to the LR and DNN, especially for QLCSs
and disorganized convection (Fig. 11).

A benefit of the GMM approach is that a fully hand-labeled
training dataset is not needed, and the only human input is to
assign the individual clusters within the GMM, which can be
done rather simply by an individual looking through a small
subset of storms in each cluster. While the classifications in
the withheld testing dataset possessed large ROCA, similar to
the other three classifiers, its predictions were poorly cali-
brated, and tended to produce probabilities near 0% or 100%
and have lower reliability scores. While for some classification

problems sharpness (the tendency for probabilities to cluster
near the extremes) is desirable, there is often considerable un-
certainty in assigning a convective mode for a particular storm.
The output of the probabilistic classifiers should reflect this un-
certainty as well as possible. Future work should explore how
to better calibrate the GMM predictions without significantly
increasing the labeling burden.

In addition to improving the calibration of the GMM, further
optimization of the CNN, DNN, and GMM hyperparameters
may result in better performance for the specific task of convec-
tive mode classification. Exploring the multidimensional space
of hyperparameters, including identifying the optimal selection
of input features and neural network architectures, is computa-
tionally intensive and beyond the scope of this work. Neverthe-
less, given the similarity of the results among the multiple
different ML algorithms, and the uncertainty inherent in storm
mode classification, there is likely diminishing returns to further

FIG. 16. Conditional probabilities of a tornado (red), wind (blue), hail (green), or any (gray) report occurring within
one 80-km grid box and 2 h of three modes classified using the (a) CNN, (b) GMM, (c) DNN, and (d) LR classifiers.
Results aggregated across forecast hours 12–35 for all 2016 NCAR-WRF forecasts.
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optimization. The current set of ML algorithms should be used
as a baseline in future work, with hyperparameter optimization
informing how the algorithms can be fine-tuned for use with a
different training dataset.

Moreso than the ML architectures, an open-ended question
is how the current results extend to other NWP systems, in-
cluding operational CAMs such as the High Resolution Rapid
Refresh (HRRR; Dowell et al. 2022). To examine this ques-
tion, the authors have tested the use of the CNN, DNN, and
GMM classifiers within the 2021 and 2022 NOAA Hazardous
Weather Testbed Spring Experiments (Clark et al. 2023), us-
ing NCAR-WRF and HRRR datasets as input to produce
mode classifications in real-time. Participants in these real-
time experiments were provided with probabilistic convective
mode output and asked to evaluate it compared to their sub-
jective impressions of the modes present within a particular
day’s forecast. In general, the subjective feedback of the vari-
ous classifiers was positive in that the cases where the mode
was obvious to the participants, the automated classifiers per-
formed well, and that in cases where the mode was ambiguous
to the participants, the classifiers represented this uncertainty
by producing low probabilities. The subjective feedback also in-
dicated that the GMM technique was poorly calibrated, match-
ing the objective verification metrics provided in this work. The
classifiers were somewhat robust to changes to the input model,
in that when a classifier trained with NCAR-WRF data was
used to classify storms in the HRRR, the output was deemed to
still be valuable, although the average subjective ratings for the
classifiers using the HRRR input were slightly lower than the
classifications for the NCAR-WRF output. Applying these
trained models to other CAMs may not work as readily, given
that the NCAR-WRF and HRRR have similar model compo-
nents (i.e., WRF-based with similar physics choices). Future
work should explore how these classifiers can be optimized
across a diverse set of CAM systems.

Acknowledgments. We thank Steve Weiss, Morris Weisman,
Rich Thompson, and Glen Romine, who all assisted with the
labeling of CAM convective storms. We also thank two anon-
ymous reviewers whose suggestions improved the manuscript.

This material is based upon work supported by the National Cen-
ter for Atmospheric Research, which is a major facility sponsored
by the National Science Foundation under Cooperative Agree-
ment 1852977. This research was supported by NOAA OAR
Grants NA17OAR4590114, NA19OAR4590128, NSF Grant
ICER-2019758, and the NCAR Short-term Explicit Prediction
Program. Supercomputing support was provided by NCAR
Cheyenne andCasper (CISL 2020).

Data availability statement. The training and analysis code
are in the HWT Mode repository archived at https://doi.org/10.
5281/zenodo.7730773. Storm objects were analyzed with the
Hagelslag package https://doi.org/10.5281/zenodo.6862433. Data
describing storms and predictions are available from Globus at
https://app.globus.org/file-manager?origin_id=b2a321ab-92ee-
471b-9eac-64419d091661&origin_path=\%2F.

REFERENCES

Ashley, W. S., A. M. Haberlie, and J. Strohm, 2019: A climatology
of quasi-linear convective systems and their hazards in the
United States.Wea. Forecasting, 34, 1605–1631, https://doi.org/
10.1175/WAF-D-19-0014.1.

Biard, J. C., and K. E. Kunkel, 2019: Automated detection of
weather fronts using a deep learning neural network.Adv. Stat.
Climatol. Meteor. Oceanogr., 5, 147–160, https://doi.org/10.
5194/ascmo-5-147-2019.

Brotzge, J. A., S. E. Nelson, R. L. Thompson, and B. T. Smith, 2013:
Tornado probability of detection and lead time as a function of
convective mode and environmental parameters.Wea. Fore-
casting, 28, 1261–1276, https://doi.org/10.1175/WAF-D-12-
00119.1.

CISL, 2020: Cheyenne: HPE/SGI ICE XA System (NCAR
Community Computing). NCAR/CISL Advanced Research
Computing, accessed 1 July 2019–30 June 2023, https://doi.org/
10.5065/D6RX99HX.

Clark, A. J., and Coauthors, 2023: The third real-time, virtual
Spring Forecasting Experiment to advance severe weather
prediction capabilities. Bull. Amer. Meteor. Soc., 104, E456–
E458, https://doi.org/10.1175/BAMS-D-22-0213.1.

FIG. 17. Conditional probability of a hail (green), wind (blue), tornado (red), or any (black) storm report occurring within 80 km and
2 h of each object centroid in the 2016 NCAR-WRF dataset, given a particular (a) supercell, (b) QLCS, and (c) disorganized probability
value. Probabilities are divided into 10% bins and use only the output from the LR classifier.

MONTHLY WEATHER REV I EW VOLUME 1512026

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:39 PM UTC

https://doi.org/10.5281/zenodo.7730773
https://doi.org/10.5281/zenodo.7730773
https://doi.org/10.5281/zenodo.6862433
https://app.globus.org/file-manager?origin_id=b2a321ab-92ee-471b-9eac-64419d091661&origin_path=%2F
https://app.globus.org/file-manager?origin_id=b2a321ab-92ee-471b-9eac-64419d091661&origin_path=%2F
https://doi.org/10.1175/WAF-D-19-0014.1
https://doi.org/10.1175/WAF-D-19-0014.1
https://doi.org/10.5194/ascmo-5-147-2019
https://doi.org/10.5194/ascmo-5-147-2019
https://doi.org/10.1175/WAF-D-12-00119.1
https://doi.org/10.1175/WAF-D-12-00119.1
https://doi.org/10.5065/D6RX99HX
https://doi.org/10.5065/D6RX99HX
https://doi.org/10.1175/BAMS-D-22-0213.1


Dowell, D. C., and Coauthors, 2022: The High-Resolution Rapid
Refresh (HRRR): An hourly updating convection-allowing
forecastmodel. Part I: Motivation and systemdescription.Wea.
Forecasting, 37, 1371–1395, https://doi.org/10.1175/WAF-D-21-
0151.1.

Gagne, D. J., II, A. McGovern, and J. Brotzge, 2009: Classifi-
cation of convective areas using decision trees. J. Atmos.
Oceanic Technol., 26, 1341–1353, https://doi.org/10.1175/
2008JTECHA1205.1.

}}, }}, S. E. Haupt, R. A. Sobash, J. K. Williams, and M.
Xue, 2017: Storm-based probabilistic hail forecasting with
machine learning applied to convection-allowing ensembles.
Wea. Forecasting, 32, 1819–1840, https://doi.org/10.1175/
WAF-D-17-0010.1.

}}, S. E. Haupt, D. W. Nychka, and G. Thompson, 2019: Inter-
pretable deep learning for spatial analysis of severe hail-
storms. Mon. Wea. Rev., 147, 2827–2845, https://doi.org/10.
1175/MWR-D-18-0316.1.

Gallus, W. A., N. A. Snook, and E. V. Johnson, 2008: Spring and
summer severe weather reports over the Midwest as a func-
tion of convective mode: A preliminary study. Wea. Forecast-
ing, 23, 101–113, https://doi.org/10.1175/2007WAF2006120.1.

Guillot, E. M., T. M. Smith, V. Lakshmanan, K. L. Elmore, D. W.
Burgess, and G. J. Stumpf, 2008: Tornado and severe thun-
derstorm warning forecast skill and its relationship to storm
type. 24th Conf. on Interactive Information Processing Sys-
tems for Meteorology, Oceanography, and Hydrology, New
Orleans, LA, Amer. Meteor. Soc., 4A.3, https://ams.confex.
com/ams/88Annual/techprogram/paper_132244.htm.

Jergensen, G. E., A. McGovern, R. Lagerquist, and T. Smith, 2020:
Classifying convective storms using machine learning. Wea.
Forecasting, 35, 537–559, https://doi.org/10.1175/WAF-D-19-
0170.1.

Kolodziej Hobson, A. G., V. Lakshmanan, T. M. Smith, and
M.Richman, 2012:An automated technique to categorize storm
type from radar and near-storm environment data.Atmos. Res.,
111, 104–113, https://doi.org/10.1016/j.atmosres.2012.03.004.

Lack, S. A., and N. I. Fox, 2012: Development of an automated
approach for identifying convective storm type using reflec-
tivity-derived and near-storm environment data. Atmos. Res.,
116, 67–81, https://doi.org/10.1016/j.atmosres.2012.02.009.

Lagerquist, R., A. McGovern, and D. J. Gagne II, 2019: Deep
learning for spatially explicit prediction of synoptic-scale
fronts. Wea. Forecasting, 34, 1137–1160, https://doi.org/10.
1175/WAF-D-18-0183.1.

Lakshmanan, V., and T. Smith, 2009: Data mining storm attrib-
utes from spatial grids. J. Atmos. Oceanic Technol., 26, 2353–
2365, https://doi.org/10.1175/2009JTECHA1257.1.

}}, K. Hondl, and R. Rabin, 2009: An efficient, general-purpose
technique for identifying storm cells in geospatial images. J.
Atmos. Oceanic Technol., 26, 523–537, https://doi.org/10.1175/
2008JTECHA1153.1.

}}, K. L. Elmore, and M. B. Richman, 2010: Reaching scientific
consensus through a competition. Bull. Amer. Meteor. Soc.,
91, 1423–1427, https://doi.org/10.1175/2010BAMS2870.1.

Lintott, C., and Coauthors, 2011: Galaxy Zoo 1: Data release of
morphological classifications for nearly 900,000 galaxies.
Mon. Not. Roy. Astron. Soc., 410, 166–178, https://doi.org/10.
1111/j.1365-2966.2010.17432.x.

Mason, I., 1982: A model for assessment of weather forecasts. Aust.
Meteor.Mag., 30, 291–303.

Murphy, A. H., 1973: Hedging and skill scores for probability fore-
casts. J. Appl. Meteor., 12, 215–223, https://doi.org/10.1175/
1520-0450(1973)012,0215:HASSFP.2.0.CO;2.

Potvin, C. K., andCoauthors, 2022: An iterative storm segmentation
and classification algorithm for convection-allowing models
and gridded radar analyses. J. Atmos. Oceanic Technol., 39,
999–1013, https://doi.org/10.1175/JTECH-D-21-0141.1.

Prein, A. F., and Coauthors, 2015: A review on regional convec-
tion-permitting climate modeling: Demonstrations, prospects,
and challenges. Rev. Geophys., 53, 323–361, https://doi.org/10.
1002/2014RG000475.

Schwartz, C. S., and R. A. Sobash, 2019: Revisiting sensitivity to
horizontal grid spacing in convection-allowing models over
the central and eastern United States. Mon. Wea. Rev., 147,
4411–4435, https://doi.org/10.1175/MWR-D-19-0115.1.

Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E.
Brooks, 2012: Convective modes for significant severe thun-
derstorms in the contiguous United States. Part I: Storm clas-
sification and climatology. Wea. Forecasting, 27, 1114–1135,
https://doi.org/10.1175/WAF-D-11-00115.1.

Sobash, R. A., J. S. Kain, D. R. Bright, A. R. Dean, M. C. Coniglio,
and S. J. Weiss, 2011: Probabilistic forecast guidance for severe
thunderstorms based on the identification of extreme phenom-
ena in convection-allowing model forecasts. Wea. Forecasting,
26, 714–728, https://doi.org/10.1175/WAF-D-10-05046.1.

}}, C. S. Schwartz, G. S. Romine, K. R. Fossell, and M. L.
Weisman, 2016: Severe weather prediction using storm surro-
gates from an ensemble forecasting system. Wea. Forecasting,
31, 255–271, https://doi.org/10.1175/WAF-D-15-0138.1.

}}, }}, }}, and M. L. Weisman, 2019: Next-day prediction
of tornadoes using convection-allowing models with 1-km
horizontal grid spacing. Wea. Forecasting, 34, 1117–1135,
https://doi.org/10.1175/WAF-D-19-0044.1.

}}, G. S. Romine, and C. S. Schwartz, 2020: A comparison of
neural-network and surrogate-severe probabilistic convective
hazard guidance derived from a convection-allowing model.
Wea. Forecasting, 35, 1981–2000, https://doi.org/10.1175/WAF-
D-20-0036.1.

Stensrud, D. J., and Coauthors, 2009: Convective-scale Warn-on-
Forecast System: A vision for 2020. Bull. Amer. Meteor. Soc.,
90, 1487–1500, https://doi.org/10.1175/2009BAMS2795.1.

Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and
P. Markowski, 2003: Close proximity soundings within super-
cell environments obtained from the Rapid Update Cycle.
Wea. Forecasting, 18, 1243–1261, https://doi.org/10.1175/1520-
0434(2003)018,1243:CPSWSE.2.0.CO;2.

}}, B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012:
Convective modes for significant severe thunderstorms in the
contiguous United States. Part II: Supercell and QLCS tor-
nado environments. Wea. Forecasting, 27, 1136–1154, https://
doi.org/10.1175/WAF-D-11-00116.1.

Trapp, R. J., G. J. Stumpf, andK. L.Manross, 2005a:A reassessment
of the percentage of tornadic mesocyclones. Wea. Forecasting,
20, 680–687, https://doi.org/10.1175/WAF864.1.

}}, S. A. Tessendorf, E. S. Godfrey, and H. E. Brooks, 2005b:
Tornadoes from squall lines and bow echoes. Part I: Climato-
logical distribution.Wea. Forecasting, 20, 23–34, https://doi.org/
10.1175/WAF-835.1.

S O BA SH E T A L . 2027AUGUST 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:39 PM UTC

https://doi.org/10.1175/WAF-D-21-0151.1
https://doi.org/10.1175/WAF-D-21-0151.1
https://doi.org/10.1175/2008JTECHA1205.1
https://doi.org/10.1175/2008JTECHA1205.1
https://doi.org/10.1175/WAF-D-17-0010.1
https://doi.org/10.1175/WAF-D-17-0010.1
https://doi.org/10.1175/MWR-D-18-0316.1
https://doi.org/10.1175/MWR-D-18-0316.1
https://doi.org/10.1175/2007WAF2006120.1
https://ams.confex.com/ams/88Annual/techprogram/paper_132244.htm
https://ams.confex.com/ams/88Annual/techprogram/paper_132244.htm
https://doi.org/10.1175/WAF-D-19-0170.1
https://doi.org/10.1175/WAF-D-19-0170.1
https://doi.org/10.1016/j.atmosres.2012.03.004
https://doi.org/10.1016/j.atmosres.2012.02.009
https://doi.org/10.1175/WAF-D-18-0183.1
https://doi.org/10.1175/WAF-D-18-0183.1
https://doi.org/10.1175/2009JTECHA1257.1
https://doi.org/10.1175/2008JTECHA1153.1
https://doi.org/10.1175/2008JTECHA1153.1
https://doi.org/10.1175/2010BAMS2870.1
https://doi.org/10.1111/j.1365-2966.2010.17432.x
https://doi.org/10.1111/j.1365-2966.2010.17432.x
https://doi.org/10.1175/1520-0450(1973)012<0215:HASSFP>2.0.CO;2
https://doi.org/10.1175/1520-0450(1973)012<0215:HASSFP>2.0.CO;2
https://doi.org/10.1175/JTECH-D-21-0141.1
https://doi.org/10.1002/2014RG000475
https://doi.org/10.1002/2014RG000475
https://doi.org/10.1175/MWR-D-19-0115.1
https://doi.org/10.1175/WAF-D-11-00115.1
https://doi.org/10.1175/WAF-D-10-05046.1
https://doi.org/10.1175/WAF-D-15-0138.1
https://doi.org/10.1175/WAF-D-19-0044.1
https://doi.org/10.1175/WAF-D-20-0036.1
https://doi.org/10.1175/WAF-D-20-0036.1
https://doi.org/10.1175/2009BAMS2795.1
https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2
https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2
https://doi.org/10.1175/WAF-D-11-00116.1
https://doi.org/10.1175/WAF-D-11-00116.1
https://doi.org/10.1175/WAF864.1
https://doi.org/10.1175/WAF-835.1
https://doi.org/10.1175/WAF-835.1

